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Abstract—There have been efforts taken by different
research projects to understand the complexity and the
performance of a mobile broadband network. Various
mobile network measurement platforms are proposed to
collect performance metrics for analysis. Data integration
would provide more thorough data analyses as well as
prediction and decision models from one dataset to an-
other. The crucial part of the data integration is to find
out, whether two datasets have corresponding features
(performance metrics). However, finding common features
across datasets is a challenging task. For example, features
might: 1) have similar names but be different metrics,
2) have different names but be similar metrics, or 3)
be same metrics but have differences in the underlying
methodology.

We designed a feature mapping methodology between
two crowdsourced LTE measurement-based datasets. Our
method is based on correlations between the features and
the mapping algorithm is solving a maximum constraint
satisfaction problem (CSP). We define our constraints as
inequality patterns between the correlation coefficients of
the measured features. Our results show that the method
maps measurement features based on their correlation
coefficients with high confidence scores (between 0.78 to
1.0 depending on the amount of features). We observe
that mapping score increases as a function of the amount of
features. Altogether, our results show that this methodology
can be used as an automated tool in the measurement data
integration.

I. INTRODUCTION

There have been efforts taken by different research
projects to understand the complexity and the per-
formance of a mobile broadband network. Various
crowsourced-based platforms such as Netradar [1], RTR
Nettest [2], Mobiperf [3], OpenSignal [4], and Speed
Test [5] have been developed to collect network related
metrics from different vantage points. Also, controlled
cross-operator measurement test platforms, such as the
MONROE [6] has been built for the same purpose.
These platforms are collecting measurement metrics
independently. It is possible to use each of this mea-
surement dataset separately for analyzing the behaviors
of mobile broadband networks, as it is recently done by
several research groups [7], [6].

However, to enable the richer use of the collected
data, the data sources should be integrated. The data

integration would provide more thorough data analyses,
for example with a wider range of Mobile Network
Operators (MNO)s included in the data. Moreover, the
data integration would provide the dynamic adaptation
of prediction and decision models from one dataset to
another. The integration of the dataset needs to find
the features (performance metrics) that are common
to these separate datasets, such as throughput, latency,
and network-level metrics. For instance, the EU project
about mapping of broadband services in Europe [8]
shows currently separate datasets by country level. One
reason of displaying such different datasets separately
is that there is no easy solution to find similar features
and to merge them. Therefore, such projects would
also benefit by applying a feature mapping method that
enables integrating datasets into a single country-level
view.

The crucial part of the data integration is to find
out, whether two datasets have corresponding features
(performance metrics). The challenge in finding similar
features rises in comparing whether they have: 1) similar
names but different metric (such as "download speed"
depicting either the throughput or average bit rate), 2)
different names but similar metric (such as "latency" and
"ping duration"), names, and 3) same metrics in general
but measurements have differences in the underlying
methodology (such as latencies measured with different
protocols). Our objective is to automatically analyse and
map similar features across platforms, without a need for
manually analyse their similarities and solve the above-
mentioned vagueness.

Our approach addresses these issue by mapping fea-
tures between crowdsourced datasets. We use platform-
specific correlation coefficients between features and
try to find the same correlation patterns from another
dataset. In the mapping, we assume that ranking between
coefficients is domain invariant. In other words, the
ranking order of the coefficients is more or less the
same in both datasets. We present a methodology for
measurement-based feature mapping of different data
sources only using the correlations between the features.
Thus, our method is independent of the actual feature



values which might be biased between the datasets. We
find mappings between performance metrics computed
under different conditions, such as different protocol in
latencies (TCP and UDP) and between biased metrics
that at first seems different, such as Reference Signal
Received Power (RSRP) and Arbitrary Strength Unit
(ASU). The results show that the method maps measure-
ment features based on their correlation coefficients with
high confidence scores (between 0.78 to 1.0 depending
on the amount of features). The applicability of our
methodology is that it can be used as an automated tool
in the measurement data integration.

This paper is structured as follows: Section II presents
the related work in feature mapping, Section III de-
scribes two datasets, Section IV explains our method-
ology, Section V presents the results of our approach,
and Section VI concludes the paper.

II. RELATED WORKS

Our work is mainly related to studies which have
the research objective of integrating measurement data
from different sources and need to solve the problem of
mapping the features across datasets.

Mapping of performance metrics and QoS features
in the LTE networks is addressed in earlier mobile
network research. Malandrino et. al [9] have the similar
objective of merging two crowdsourced LTE measure-
ment datasets. Their focus is however on using human
expertise in order to map the metrics from the datasets,
whereas we present a method that analyses the data and
proposes the mappable features without manual analysis.

Lipenbergs et. al [10] address the European-wide
broadband mapping task [8] and analyse the data repre-
sentation of broadband mapping. Apajalahti et. al com-
bine statistical correlations and human-defined semantic
dependencies to enable cross-domain mappings between
LTE performance metrics of different network providers.
Li et. al [11] map QoS parameters across LTE network
components, such as the Evolved Universal Terrestrial
Radio Access Network (E-UTRAN), Backhaul transport
network, and Evolved Packet Core (EPC) network. All
of these works propose models where the actual cross-
domain mapping is defined by human, whereas our
approach aims to find the mapping automatically.

More generally in the field of wireless networks
research, there have been approaches to map features
across data sources with statistical and machine learning
methods. For example, Manco-Vásquez et. al [12] uses a
Kernel Canonical Correlation Analysis (KCCA) method
for spectrum sensing in the cognitive radio environment.
Although the method is also correlation-based, it re-
quires the actual data sources to be in the same environ-
ment (the same time periods and/or location), whereas
our method is developed to handle heterogeneous data
where time periods and locations of the measurements
might be unknown or scattered.

Pan et. al [13] present a transfer component analysis
method that learns a cross-domain feature space for
indoor WiFi localization. Their method differs from
ours as it addresses a supervised learning task where
the feature mapping is trained with respect to labels
(locations) in the training set, which we do not consider.

The concept of feature mapping has also been ad-
dressed in sensor networks research, for example, in the
human activity recognition task. Van Kasteren et. al [14]
map features with manually define mapping functions
by first classifying the features by their type. Chiang
et. al [15] also define manually the sensor metadata
which is then used to calculate the feature similari-
ties across domains. Wen-Hui et. al [16] propose an
algorithm based on Kullback–Leibler divergence to map
cross-domain features with respect to the probability
distributions of the classification labels. In this case, one
needs to map the classification labels in order to learn
mappings between the features.

Altogether, the related work shows that cross-dataset
feature analysis has gained interest in the related re-
search fields, but most of the work relies either on
manually defined mappings or on classified data where
labels describe the measurements and feature values.
The need for automatic mapping of QoS and other LTE-
related measurement parameters between data sources
has been recognized, but to our knowledge no earlier
work for this exists yet.

III. DATASETS

For this work, we have used two measurement
datasets collected from the first of June to the end
of Nov. 2017. The first dataset is Netradar [17]. It
is a crowdsourced mobile measurement platform that
measures and collects metrics related to cellular network
performance collected from mobile user devices. It has
been running actively worldwide since March 2013. The
measurement mainly focuses on the data services and
analysis of bit-rates (over TCP), UDP based latencies
and the context information related to each measurement
including, device model, battery level, location, radio
signal strength, date and time, the mobile operator.

We processed the dataset by radio technology type
and location. For this, we select measurements under
LTE network, which has been collected from Helsinki
area, Finland. Netradar has a number of measurement
metrics related to cellular network performance. In this
paper, we use the following metrics: TCP-based down-
link and uplink throughput, UDP-based latency, signal
strength, LTE ASU, LTE RSRP, LTE Reference Signal
Received Quality (RSRQ), LTE Reference Signal Signal
to Noise Ratio (RSSNR), battery level, and movement
speed.

The second dataset we have used in this paper is
RTR Nettest [2]. It is a mobile application that
collects information from the end user with an open



dataset access. It records features including the downlink
and uplink throughput, signal strength, network metrics
such as RSRP and RSRQ for LTE, connection error
and IP packet loss, ping based latency, testing time,
IP address and host name of the computer. It also
collects other quality parameters such as Domain Name
System (DNS), ports, transparent connection, download-
ing speed test website and traceroute. RTR Nettest
provides more than 60 network-related features. For this
work, we only focus on metrics collected under LTE
network. These are the TCP-based downlink and uplink
throughputs, TCP-based ping latency test, LTE RSRQ,
and LTE RSRP.

IV. METHODOLOGY

This section presents the method that maps the
measurement-based features between two crowdsourced
LTE data platforms, RTR Nettest and Netradar. Thus, the
features are performance metrics and QoS parameters
collected via end-user measurements. The main problem
is to find and map corresponding features between two
platforms by only analysing their correlation coefficients
with other features. The hypothesis is that we can
find feature pair-specific patterns from the correlation
coefficients which occur in both platforms. The objec-
tive of the method is to rank the coefficient values
and represent every coefficient pair with inequalities,
such as r(fx, fy) < r(fy, fz) stating that correlation
between fx and fy is lower than fy and fz . For
example, our analysis shows that we can make a general
rule r(latency, downlink) < r(downlink, uplink) (see
Section V for more information).

A. Preparing measurements into correlation coefficient
rankings

In order to find regular patterns regarding the coef-
ficient rankings of a large dataset (data available from
RTR Nettest or Netradar), we need to preprocess the
data. Figure 1 shows the preprocessing phase. First,
the dataset is split into smaller monthly subsets (step
1). Next, a correlation matrix Ri is calculated for each
subdataset (step 2). For evaluation purposes we use both
Pearson’s linear and Spearman’s non-linear correlations.
Finally, for each subdataset we calculate coefficient
rankings as a set of inequality clauses (step 3).

Fig. 1: Preprocessing of the data: 1) splitting into
monthly subsets 2) calculating correlation matrices 3)
listing the rankings between the correlation coefficients.

B. Correlation-based feature mapping
The output of the preprocessing task (Figure 1) is

used for the actual mapping. Figure 2 shows an overall
picture how the features are mapped across the plat-
forms. The earlier described data preparation are made
separately for both source and target platforms. From
the source platform, we also need to learn which of the
coefficient inequalities are more regular than others re-
garding the N subdatasets (step 1). We add an inequality
r(fx, fy) < r(fy, fz) between correlation coefficients of
features fx, fy , and fy ,fz into the constraint base, if the
inequality occurs in majority (more than 0.5 times) of
the subdatasets. After learning the constraint base we
use it to find similar patterns from the target platform
(step 2).

Fig. 2: Steps in the mapping procedure: 1) learning the
constraints from the source platform and 2) mapping
those to correlation coefficients from the target platform.

Technically, our feature mapping method is solving an
approximation of a well-known constraint satisfaction
problem (CSP). A CSP is a problem in which values
need to be assigned to variables so that given constraints
are satisfied. [18] In our case, the constraints are the
inequalities that we learn between the correlation coef-
ficients of the source platform and variables the feature
pairs of the source features FS . The problem is then to
assign feature pairs from the target platform (features
FT ) as variable values to the constraint base (replacing
FS with FT ) so that the assigned feature pairs maximize
the number of truth statements when comparing the
constraint base to the target datasets. Assuming that
a set of features would have a similar ranking of the
coefficient values across platforms, the solution of the
maximum CSP problem would then also be a mapping
of features between FT and FS .

Algorithm 1 demonstrates at a high level how the
maximum CSP is adapted to the feature mapping.
Basically, we try every possible mapping combination
between a set of target and source features, and try
to maximize the truth statements that the assignments
(mapping) in the constraint base will produce while
comparing the assigned constraints to the correlation
data from the target platform.



Algorithm 1 Pseudoalgorithm demonstrating the func-
tionality of the feature mapping.

for each possible mapping Mapi(FT , FS) do
Assign features FT to the constraint base wrt.
Mapi
for each monthly-based correlation matrix in the
target platform do

Count, how many times constraints are satisfied
in the target platform with the current assign-
ment.

end for
end for
return Mappings having the highest count of truth
statements

The algorithm returns a list of possible mappings,
that have the highest satisfiability count. For every
possible mapping between features fT i and fSj, we
define a mapping score which is a portion of their
occurrence in the returned list. For example, let us
consider a mapping case where the problem is to
map three features between platforms S and T : Fs =

{x, y, z} and FT = {a, b, c}. The algorithm returns
two lists of mappings: Map1{(x, a), (y, b), (z, c)} and
Map2{(x, a), (y, c), (z, b)}. For this example case, the
mapping scores would be: (x, a) = 1.0 and 0.5 for
(y, b), (y, c), (z, b) and (z, c). The scores indicate that x
and a could be mapped with each other while other map-
pings can not be deduced from these results. Generally,
as the method requires inequalities between coefficients,
at least three features from both platforms are required
at minimum and a higher number of features would
provide a richer set of constraints for the analysis.

V. RESULTS

This section evaluates the feature mapping method.
The datasets, Netradar and RTR Nettest, are separated
into six monthly sub-datasets in order to analyse the
variation of the correlation coefficients. With respect
to the documentations of the two platforms (Netradar,
RTR Nettest), we define the common features as:
(dowlink, download_kbit), (uplink, upload_kbit), (la-
tency, ping_ms), (RSRP, RSRP), (RSRQ, RSRQ). These
pairs are assumed to be matched with our feature map-
ping methodology.

A. Correlations

First, we report and analyse the correlation matrices
for the features from both platforms. For evaluation
purposes we have applied Pearson’s correlation method
for analysing possible linear relations and Spearman’s
for non-linear relations between the features.

1) Pearson: Figures 3 and 4 show Pearson’s corre-
lation matrices of monthly based data for the Netradar
and RTR Nettest platforms. Figures show heat maps with

blue indicating positive correlation (1.0 as a maximum
value), white no correlation (0.0) and red negative
correlation (-1.0 as a minimum value). In Figure 3,
the correlations between the common five features are
presented in the first five rows and columns.

From the figures can be seen that all five common
features clearly have regularities among each other;
inside every correlation matrix, the relative positions of
the coefficients stay mostly the same. For example, la-
tency (corresponding to ping_ms) and downlink (down-
load_kbit) have mainly lower negative correlation than
latency and RSRP in both platforms. Moreover, RSRP
has mainly a stronger positive correlation with uplink
(upload_kbit) than with downlink in both platforms.

From the Netradar correlation matrix (Figure 3) can
be seen that RSRP, signal strength and LTE ASU have
1.0 correlations between each other. This indicates that
the features present redundant information about the
signal strength. In our method, this would mean that
our method maps RSRP features from the source and
target platforms with equivalent scores than with LTE
ASU and signal strength. This is important to consider,
because some platform might not have RSRP present
in the measurement data, but only LTE ASU or signal
strength.

Fig. 3: Pearson’s correlations in the Netradar platform.
First five rows and columns show the correlations be-
tween the common features: uplink, downlink, latency,
RSRP, and RSRQ.



Fig. 4: Pearson’s correlations in the RTR Nettest plat-
form.

2) Spearman: Figures 5 and 6 show the Spearman’s
correlation matrices for the Netradar and RTR Nettest
platforms. Although the actual coefficient values vary
between Pearson and Spearman, the relations between
the features stay the same. Again, from figures can be
noticed that latency correlates stronger with downlink
than with RSRP. RSRP in turn correlates stronger with
uplink than downlink. Also, Figure 5 shows that the
Spearman correlation between RSRP, LTE ASU, and
signal strength is 1.0.

Fig. 5: Spearman’s correlations in Netradar platform.
First five rows and columns show the correlations be-
tween the common features: uplink, downlink, latency,
RSRP, and RSRQ.

Fig. 6: Spearman’s correlations in RTR Nettest platform

Altogether the correlation matrices in Figures 3–6
support our hypothesis that regular patterns between
coefficients can be found. Next, we evaluate our method-
ology with mapping scores for all mapping combinations
between the platforms.

B. Average scores of the feature mapping

To evaluate the feature mapping method, we include
all the five features from the RTR Nettest (upload_kbit,
download_kbit, ping_ms, lte_rsrp and lte_rsrq) and fol-
lowing eight from the Netradar: uplink, downlink, la-
tency, RSRP, RSRQ, RSSNR, battery_level, and speed.
We leave LTE ASU and signal strength out from the
evaluation because the correlation matrices clearly in-
dicate that they would give exactly the same results as
the RSRP (which is also the desired outcome of the
method). The higher number of features in the Netradar
dataset allows us to evaluate the mapping in situations
when there is not a simple one-to-one mapping between
the features, but also some "noisy" features that should
be left without a mapping.

For evaluation purposes, we define a mapping score
between FT and FS for a single mapping case as fol-
lows: 1

M ∑
M
i=0 score(fTi, fSi), where M is the number

of common features between the sets (M = ∣FT ∩ FS ∣),
fTi and fSi are the ith common features from the FT

and FS . As defined in Section III, the common feature-
pairs are defined as: (uplink,upload_kbit), (downlink,
download_kbit), (latency, ping_ms), (RSRP, lte_rsrp),
and (RSRQ, lte_rsrq).

We evaluate the overall performance of the mapping
by generating all possible mapping combinations be-
tween the source and target features in order to examine
how our method catches the different levels of similar-
ities between the feature sets. We present the overall
results in plots that show average mapping scores as
a function of the ratio of common features. This means
that we group all mapping cases that have the same ratio
of common features and calculate the average mapping
score over those. For example, the mapping of three
features means that there are 560 mapping combinations



((5
3
) × (

8
3
)) in the plot and the point where the common

ratio is 3/3, the value is averaged over 10 ((5
3
)) different

mapping combinations.
Figure 7 shows the average scores of the feature

mapping while RTR Nettest is the source and Ne-
tradar the target platform. Figure has three subplots
separating the mapping results between the mapping
of three, four, and five features. All the subplots show
that the average scores of perfect mappings (common
ratio is 1.0) can clearly be distinguished from imperfect
mappings (common ratio is lower than 1.0). Moreover,
the increasing trend of the scores as a function of the
common ratio can be noticed. This shows the desired
outcome that the feature mapping method gives better
scores when higher portion of common features are
mapped. The different correlation methods, Spearman,
Pearson, and their combination (both of them are used in
the constraint base), give rather similar results, meaning
that linear relations can be used as well as non-linear.

Fig. 7: Average mapping scores when mapping from
RTR Nettest to Netradar. The score increases as a
function of the common ratio. The perfect mappings
(ratio of 1.0) outperforms the incomplete mappings.

Figure 8 shows the mapping results when Netradar is
the source, and RTR the target platform and the same
features are included in the evaluation. Apart from a
small variation, the scores are rather equal to the earlier
mapping case shown in Figure 7.

Altogether, the average scores show that the feature
mapping method is able to distinguish incomplete map-
pings from the perfect mappings. Regardless of the
amount of mapped features, there is a remarkable gap in
the scores between the incorrect mappings and correct
mappings (between the scores having a common ratio
of 1.0 compared with lower ratios). Moreover, we can
see that also the scores of the incorrect mappings give
an insight of how many correct features there might
be between the platforms, as the average score clearly
correlates with the common ratio.

C. Feature-specific scores

Next, we evaluate our method from the perspective
of the common features in order to report the differ-

Fig. 8: Average mapping scores when mapping from
Netradar to RTR Nettest. The score increases as a
function of the common ratio. The perfect mappings
(ratio of 1.0) outperforms the incomplete mappings.

ences between the features. We define a feature-specific
mapping score as an average over all mapping cases,
in which the common ratio is 1.0. As we have 16
such cases ((5

3
) + (

5
4
) + (

5
5
)), the feature-specific score

of the ith common feature (fTi and fSi respectively) is
1
16 ∑

16
j=0 score(fTij , fSij).

Feature-specific scores of the mappings can be seen in
Figure 9. This plot shows that there are more variations
between the correlation methods and between the feature
scores than that could be seen from the earlier overall re-
sults. The combined method (Pearson + Spearman) gives
rather stable scores regardless of the source and target
platform. The highest difference in the performance is in
the uplink scores; uplink gets a score of 0.8 while RTR
Nettest is the source platform, but 0.96 while Netradar
is the source platform.

The latency outperforms all other features having the
highest possible mapping score of 1.0. This result is
expected as the earlier correlation matrices (Figures 3 –
6) show that latency clearly has the lowest correlations
with all the other features, which makes it easy distin-
guish it with respect to our method. Another finding of
these plots is that RSRP and RSRQ are more difficult
to map than the other features, as their scores are lower.
A closer look to the individual mapping cases shows
that RSRP and RSRQ are sometimes mixed up together
when only three features were mapped.

Altogether, we may conclude that the feature-specific
figure scores are high enough to make correct mappings
between all features, but there are some variations
between the feature scores. For example, RSRP and
RSRQ have lower scores, whereas latency clearly has
the highest scores of 1.0. All scores are acceptable as the
scores do not present the accuracy, but rather a "voting"
score, as explained in Section IV. Thus, any score higher
than 0.5 for a common feature implies that on average
we would select a correct mapping. Moreover, it should
be noted that a random guess would have a mapping



score of 0.33, 0.25, or 0.2, depending of the amount of
features (1/N , in general).

Fig. 9: Feature-specific mapping scores. The scores are
high enough to make correct mappings for all features
but there is variation between the features.

VI. CONCLUSION

In this work, we designed a feature mapping method-
ology between two crowdsourced LTE measurement-
based platforms. Our objective is to automatically anal-
yse and map similar features across platforms, without a
need for manually analyse their similarities. Our method
is based on correlations between the features and the
mapping algorithm is solving a maximum constraint
satisfaction problem (maximum CSP). We defined our
constraints as inequality patterns between the correlation
coefficients of the measured features.

Our results show that the method maps the common
features with high confidence scores (between 0.78 to
1.0 depending on the amount of features). As a desired
outcome of the method, the average mapping score
increases when more similar features are involved. The
results also indicate that there is no significant difference
in the average results between using Pearson, Spearman,
or their combination. However, some individual features
perform slightly better using Pearson (uplink and RSRQ)
and some other using Spearman (downlink). Some issues
were noticed between features having similar patterns,
for example RSRP and RSRQ. However, even then the
scores are promising and our results show that this
methodology can be used as an automated tool in the
measurement data integration.

In the future work, we will include more measurement
datasets in the feature analysis. Moreover, with the
merged datasets we may do cross-dataset analysis, for
example by using the transfer learning paradigm [19]
from the machine learning.
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