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Time Series Data

 An organized discrete sequence of n real number values. 

 A contiguous recorded result of a certain phenomena, a 

measurement or, an observation collected at constant time 

interval.

 Applicable in various areas:
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Time series data representation and indexing

 Since time series data is high dimensional

 Processing the 'raw' time series requires:

 High computation time and large memory space

 Dimensionality reduction and indexing  methods
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Time series representation
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 Motivation

 Indexing is a key for processing time series, but 

query answering even with an index can be slow

 iSAX and its extension iSAX 2.0 indexes really 

massive dataset

 MapReduce is a software framework for processing 

large dataset

 Question:

 How we can answer iSAX based quires faster in 

distributive environment using MapReduce

Introduction Motivation
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 Objective :

 Implement iSAX exact search in MapReduce

 Improve lower bound distance calculation method

 Analysis the execution time of simple, MapReduce, 

and KNN search

 Using synthetic and real dataset

 Optimizing MapReduce query answering using other 

frameworks such as Memcached. 5

 Problem statement

 iSAX exact search is an expensive search - required 

an intensive computation and I/O cost

 Query answering takes more time as index size 

increases

Introduction Problem statement and Objective
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PRESENTATION OUTLINE

 Time series representation and indexing method
 iSAX

 Introduction to MapReduce

 Implementation and methods

 MapRedExactSearch

 MaxCardMapRedExactSearch

 K-Nearest Neighbor Search

 Experimental Results

 Summary and future directions

 Questions
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SAX: Symbolic Aggregate approXimation

 Represent a time series T of length n into w segments

 iSAX word :

 Comparing two iSAX words of different  cardinality

 Comparing  different  cardinalities within a single word
7

Representation and indexing SAX Representation 

T4 =iSAX(T, 4, 4) = {11,11,01,00}={34, 34, 14, 04 }
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iSAX indexing

 Hierarchical tree structure.

 Leaf node points to index file on the disk.

 Example: iSAX word can be mapped to 

7.8_5.8_3.8_1.8.txt

 Terminal nodes: created when the number of time series 

in a leaf node exceeds leaf size
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Representation and indexing iSAX indexing

(Child nodes)

(Leaf nodes)

{34, 34, 14, 04 }

{48, 34, 14, 04 } {58, 34, 14, 04 }
(Child 2)(Child 1)

For given (c = cardinality, w = word 

length) => cw different iSAX words.

Leaf size (threshold): maximum time 

series a word (leaf node) can hold

Node to be split

{78, 58, 38, 18 } 
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MapReduce

9

1 2 3 4 5

Read input file 
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across separate 

Map node

Map function 

runs and 

produce output 

for each map

Intermediate key-

value pairs, which 

then input to 
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MapReduce
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Exact search using MapReduce

 Begin: before starting the map tasks 

 Combined input file using CombineFileInputFormat

 Each combined file is processed by different map task. 

 Mapper:  

 Read all the time series from the combined file 

 Compute the minimum distance for each time series 

Before Reducer 

 Grouped Mapper output based on filename 

 Ordered  based on the distance.

 Reducer: processes  each  group  separately. 

 Output the minimum from each group. 

 Result:

 Minimum distance of of  all  entries from the query. 
10

Implementation and methods iSAX exact search in MapReduce
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EXACT SEARCH USING MAXIMUM CARDINALITY

 Lower bound distance: 

 Symbolic distance actual distance

 Used to prune the search space

 Computed using the highest cardinality (8 bit)

 Used two separate Sequence files in HDFS

1. Leaf Node with iSAX representation of each time series 

2. Leaf Node with  raw time series 
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Implementation and methods MaxMinDistance for lower bound


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K - nearest neighbor search (KNN)
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KNNMapRedJob1

Outputs k closest 

entries from the 

query for each index 

file

First MapRed Job output

KNNMapRedJob2

 Mapper: 

 Reads the records outputted by the first job

 Changes the key of all the records to the same key

Before Reducer: Group all the out put together

Ordered according to the distance. 

 Reducer:  

 Output the k first records.

 Finally: 

 Update the existing closest neighbor’s list with k 

smallest distance

Implementation and methods K-Nearest Neighbor search
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Experimental setup

 Experiments are conducted on single node pseudo 
distributed mode

 Configured:

 On Intel 64 bit Core i5-2430M CPU @ 2.4GHz

 Memory size 4GB and Ubuntu 12.04 LTS

 Hadoop version 1.0.3

 Java as Programming language

 Data sets: 

 Randomly generated with length 128, 

 Base cardinality=2, Word length=8, leaf size = 100,1000,&10000

 Time series size1, 2, 4, 5 and 8 million

 Homo.sapiens.NCBI36 42 DNA chromosome 5 and 11

 Results are averages over 5 runs for each query

 Average execution time measured in seconds 13

Experimental Results Experimental setup
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MapRedExactSearch compared to simple exact search

 Figure: Different average execution time of Simple and MapReduce
implementation for indexed size 1m, 2m, 4m, 5m and 8m time series 
leaf size=10000
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Experimental Results Simple Vs MapRedExactSearch
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Maximum cardinality and lower bound

 The effect of minimum Bound for pruning leaf nodes: when 

 Bound is calculated using 
 Maximum Cardinality=256

 Maximum Cardinality selected local to each leaf node, and 

 Symbolic representation of the leaf node 15

Experimental Results Maximum cardinality and lower bound
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 Average execution time of searching queries in seconds tested for
 Simple search,

 MapReduce with out using Maximum cardinality and

 MapReduce using Maximum cardinality
16

Indexed time series size of 1, 2, 4, 5 and 8 million
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Experimental Results
Simple ,MapRedExactSearch,  and 

MaxCardMapRedExactSearch
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Substituting the Reducer with Memcached option

 Memcached : distributed memory-based object catching system 

 Often used to hold small objects in RAM for fast possessing

 Average execution time of 1million time series under leaf size 100,1000 and 10000 using 

memcached
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Experimental Results Using Memcached
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K –Nearest Neighbor compared with MapRedExactSearch

 Average execution time of K-NN and MapRedExactSearch

for time series size 1,4,5 and 8 million, where k=4
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Experimental Results K –Nearest Neighbor
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Genome data

 Each genome data converted into time series and 

indexed with base cardinality =2, word length=8, time 

series length=128, leaf size =10000

 Generated 5 different queries by randomly 

changing two DNA symbols of the sequence

19

Genome dataExperimental Results
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Summary

 On this thesis:

 MapReduce to answer iSAX time series query with 

small average execution time than simple search

 Highest cardinality for computing lower bound 

minimize the number of leafs visited

 Has computation cost

 MapReduce implementation using highest cardinality 

get advantage over simple search for large dataset

 MapRedExactSearch algorithm has very fast execution 

time than the other approaches

 Applicable for K-Nearest Neighbor search

20

SummarySummary and future directions
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Future directions

 Running all algorithms using real cluster of  

multiple nodes.

 More research on memcached implementation

 Carful consideration of  MapReduce job 

configuration is crucial. 

 Example:  On the split size and number of Reducers 

 Supporting with other distributive frameworks 

such as ActiveMQ
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Future directionsSummary and future directions
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