

Information Engineering and Computer Science Department

TIME-SERIES SIMILARITY QUERY ANSWERING USING ISAX ON MAP REDUCE

March 12, 2014

Ermias Andargie Walelgne

Advisor:

Prof. Themis Palpanas

2

Time Series Data

• An organized discrete sequence of n real number values. $T = (t_1, ..., t_n), t_i \in R$

- A contiguous recorded result of a certain phenomena, a measurement or, an observation collected at constant time interval.
- Applicable in various areas:

Ermias Andargie Walelgne (UniTN)

Time series data representation and indexing

- Since time series data is high dimensional
- Processing the 'raw' time series requires:
 - High computation time and large memory space
- Dimensionality reduction and indexing methods

Ermias Andargie Walelgne (UniTN)

o Motivation

- Indexing is a key for processing time series, but query answering even with an index can be slow
- iSAX and its extension iSAX 2.0 indexes really massive dataset
- MapReduce is a software framework for processing large dataset

• <u>Question:</u>

• How we can answer iSAX based quires faster in distributive environment using MapReduce

Problem statement

- iSAX exact search is an expensive search required an intensive computation and I/O cost
- Query answering takes more time as index size increases

o <u>Objective :</u>

- Implement iSAX exact search in MapReduce
- Improve lower bound distance calculation method
- Analysis the execution time of simple, MapReduce, and KNN search
 - Using synthetic and real dataset
- Optimizing MapReduce query answering using other frameworks such as Memcached.

6

PRESENTATION OUTLINE

Time series representation and indexing method
iSAX

- Introduction to MapReduce
- Implementation and methods
 - MapRedExactSearch
 - MaxCardMapRedExactSearch
 - K-Nearest Neighbor Search
- Experimental Results
- Summary and future directions
- Questions

SAX: Symbolic Aggregate approXimation

• Represent a time series T of length n into w segments

Ermias Andargie Walelgne (UniTN)

iSAX indexing

- Hierarchical tree structure.
- Leaf node points to index file on the disk.
 - Example: iSAX word {7⁸, 5⁸, 3⁸, 1⁸} can be mapped to 7.8_5.8_3.8_1.8.txt
- **Terminal nodes:** created when the number of time series in a leaf node exceeds leaf size

For given (c = cardinality, w = word length) => c^w different iSAX words.

Leaf size (threshold): maximum time series a word (leaf node) can hold

8

Ermias Andargie Walelgne (UniTN)

MapReduce

MapReduce

Ermias Andargie Walelgne (UniTN)

Exact search using MapReduce

• **Begin**: before starting the map tasks

- Combined input file using CombineFileInputFormat
- Each combined file is processed by different map task.

• Mapper:

- Read all the time series from the combined file
- Compute the minimum distance for each time series

Before Reducer

- Grouped Mapper output based on filename
- Ordered based on the distance.
- Reducer: processes each group separately.
 - Output the minimum from each group.

• Result:

• Minimum distance of of all entries from the query.

EXACT SEARCH USING MAXIMUM CARDINALITY

- Lower bound distance:
 - Symbolic distance \leq actual distance
 - Used to prune the search space
 - Computed using the highest cardinality (8 bit)
- Used two separate Sequence files in HDFS
 - 1. Leaf Node with iSAX representation of each time series
 - 2. Leaf Node with raw time series

K - nearest neighbor search (KNN)

KNNMapRedJob2

• Mapper:

- Reads the records outputted by the first job
- Changes the key of all the records to the same key

Before Reducer: Group all the out put together Ordered according to the distance.

• Reducer:

• Output the k first records.

• Finally:

• Update the existing closest neighbor's list with k smallest distance

First MapRed Job output

KNNMapRedJob1

Outputs **k** closest entries from the query for each index file

Experimental setup

- Experiments are conducted on single node pseudo distributed mode
- Configured:
 - On Intel 64 bit Core i5-2430M CPU @ 2.4GHz
 - Memory size 4GB and Ubuntu 12.04 LTS
 - Hadoop version 1.0.3
 - Java as Programming language
- Data sets:
 - Randomly generated with length 128,
 - Base cardinality=2, Word length=8, leaf size = 100,1000,&10000
 - Time series size1, 2, 4, 5 and 8 million
 - Homo.sapiens.NCBI36 42 DNA chromosome 5 and 11
- Results are averages over 5 runs for each query
- Average execution time measured in seconds

MapRedExactSearch compared to simple exact search

• Figure: Different average execution time of Simple and MapReduce implementation for indexed size 1m, 2m, 4m, 5m and 8m time series leaf size=10000

Maximum cardinality and lower bound

- Bound is calculated using
 - Maximum Cardinality=256
 - Maximum Cardinality selected local to each leaf node, and
 - Symbolic representation of the leaf node

Ermias Andargie Walelgne (UniTN)

Time-Series Similarity Query Answering Using iSAX on Map Reduce

Experimental Results

Simple ,MapRedExactSearch, and MaxCardMapRedExactSearch

MapReduce using Maximum cardinality

Ermias Andargie Walelgne (UniTN)

Substituting the Reducer with Memcached option

- Memcached : distributed memory-based object catching system
- Often used to hold small objects in RAM for fast possessing

 Average execution time of 1million time series under leaf size 100,1000 and 10000 using memcached

Ermias Andargie Walelgne (UniTN)

K-Nearest Neighbor compared with MapRedExactSearch

Ermias Andargie Walelgne (UniTN)

Genome data

- Each genome data converted into time series and indexed with base cardinality =2, word length=8, time series length=128, leaf size =10000
- Generated 5 different queries by randomly changing two DNA symbols of the sequence

Avg. execution time	SimpleExactSearch	MapRedExactSearch
Query set 1	463.681	385.319
Query set 2	319.005	254.102

Summary

• On this thesis:

- MapReduce to answer iSAX time series query with small average execution time than simple search
- Highest cardinality for computing lower bound minimize the number of leafs visited
 - Has computation cost
- MapReduce implementation using highest cardinality get advantage over simple search for large dataset
- MapRedExactSearch algorithm has very fast execution time than the other approaches
- Applicable for K-Nearest Neighbor search

Future directions

- Running all algorithms using real cluster of multiple nodes.
- More research on memcached implementation
- Carful consideration of MapReduce job configuration is crucial.
 - Example: On the split size and number of Reducers
- Supporting with other distributive frameworks such as ActiveMQ

Thank you!

Any Questions ?

22

Ermias Andargie Walelgne (UniTN)